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Avideh Zakhor, faculty 
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Eric Turner, Graduate student 
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IV. TECHNOLOGY TRANSFER 
 
Honoring request from Army personnel Greg Spurlock, our team spent few days in April to collect data 
for some of the tunnels in the Fort Hood Military Post in Killeen, Texas.  Specifically, on April 23

rd
 and 

24
th
 2012, experiments were carried out in two separate underground tunnel systems.  The tunnel systems, 

referred to as Tunnel 92050 and Tunnel 92026, have nearly identical layout, with the main difference 
being that they are nearly mirrored complements to one another.  The tunnel complexes consisted of long 
narrow passageways with illumination ranging from bright florescent to non-existent.  Head lamps and 
flashlights were needed for a few sections of Tunnel 92026.  Geometrically, aside from the curved 
ceiling, the tunnels were long and devoid of geometric features.  This made the test conditions quite 
challenging for our laser backpack system which uses scan matching to localize and build 3D models. 
 
 For each of the tunnel systems we collected three data sets.  Since the layouts of Tunnel 92050 
and Tunnel 92026 were nearly mirror images, the path planning for each was identical.   The datasets 
were collected such that they got progressively longer and more complicated.  The first dataset was a loop 
from the tunnel system.  The basic structure of the estimated path is shown in the image below. 
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The walking time for Tunnel 92050 and Tunnel 92026 was 12.5  and 13.3 minutes respectively.  The total 
estimated length for this configuration was 896.75 for Tunnel 92050 and 973.16 meters for Tunnel 92026.  
Seen in Figures 1 through 3 below are screenshots of the reconstructed point cloud resulting from data 
taken from this section of Tunnel 92050. 
 
 
 
 

 

Figure 1: Screenshot of the 3D reconstructed point cloud for Tunnel 92050 

 
 
 
 
 

 

Figure 2: Screenshot for a close up view of the long featureless tunnels present in the datassets 
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Figure 3: Close up view of some of the details visible in an interesting subsection of the dataset. 

 
 
 
 

 The second set of experiments we ran was similar to the first in that we explored the same area.  
We entered through one of the long tunnels, explored some of the inside areas, and then returned to the 
start.  The difference, however, was that we explored a larger area inside the system and returned through 
the same tunnel at which we entered.  Exploration of Tunnel 92050 during this experiment took 15.9 
minutes and the estimated path length was 1147 meters.  Tunnel 92026 took 18.6 minutes to explore and 
the estimated path length was 1351 meters.  Figure 4 below is a screenshot of the Tunnel 92026 
reconstructed from the second experiment configuration.   
 
 
 

 

Figure 4: Screenshot of the reconstructed point cloud for Tunnel 92026. 

The final experiment we ran was the most complex of the three.  We began the run already in the 
tunnel system and explored all each of the inner portions of the tunnels in full.  This included all areas 
that we were authorized to enter and in which our backpack system could fit.  The running time for 



Final Report for ARO Sponsored Project on 3D Indoor Modeling ending 
9/14/2012; P.I. Avideh Zakhor, U.C. Berkeley 

7 

Tunnel 92050 was 19.9 minutes and the walking distance was estimated to be 1204 meters.  For Tunnel 
92026 the equivalent statistics are 21.2 minutes and 1338.7 meters.   Figure 5 below is the estimated 
system trajectory from Tunnel 92026. 

 

 

Figure 5: Estimated Trajectory for Tunnel 92026 

Reconstructing the point cloud from this section yields over one hundred million points for this length of 
running time.  Figure 6 below is a zoomed out view of this section of the tunnel system. 
 

 

Figure 6: Zoomed out view of the Tunnel 92026 
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Figure 7 shows a close up view of the intersection of two of the tunnels in the above point cloud.  The 
ceiling has been removed for visualization purposes. 
 

 

Figure 7: Close up view of the intersection of two of the tunnels in the point cloud of Figure 6. 

Using the point cloud from this dataset, a surface watertight reconstruction was performed for 
Tunnel 92050 at a resolution of 10 centimeters.  Figure 8 shows the macro view of the reconstructed 
model.   

 

Figure 8: Macro view of the reconstructed surface model for Tunnel 92050.  
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Figure 9 shows a screenshot of the intersection of two tunnels from the inside of the tunnels. 
 

 

Figure 9: Screenshot of the intersection of two tunnels from the inside of the tunnels. 

 
Finally, Figure 10 shows a view of one of the chambers from the inside. 
 

 

Figure 10: A view of one of the chambers in Figure 9 from the inside. 
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V. SCIENTIFIC PROGRESS AND ACCOMPLISHMENTS 
 

 In the area of model construction, we have developed an automatic system for planar 3D 
modeling of building interiors from point cloud data generated by range scanners [5]. This is 
motivated by the observation that most building interiors may be modeled as a collection of 
planes representing ceilings, floors, walls and staircases. Our proposed system, which employs 
model-fitting and RANSAC, is capable of detecting large-scale architectural structures, such as 
ceiling and floors, as well as small scale architectural structures, such as staircases. We have 
experimentally validated our system on a number of challenging point clouds of real architectural 
scenes. 

 

 We have developed an algorithm that generates as-built architectural floor plans from point 

clouds generated from our 3D indoor modeling system [3].  We do so by separating the floors of 

the LiDAR scan of a building, selecting a representative sampling of wall scans for each floor, 

and triangulating these samplings to develop a watertight representation of the walls for each of 

the scanned areas. Curves and straight line segments are fit to these walls, in order to mitigate any 

registration errors from the original scans. This method is not dependent on the scanning system 

and can successfully process noisy scans with non-zero registration error. Most of the processing 

is performed after a dramatic dimensionality reduction, yielding a scalable approach. We have 

demonstrated the effectiveness of our approach on a three story point cloud from a commercial 

building as well as on the lobby and hallways of a hotel. 

 

 Applying textures to these models is an important step in generating photorealistic visualizations 

of data collected by modeling systems. Camera pose recovery in such systems often suffers from 

inaccuracies, resulting in visible discontinuities when successive images are projected adjacently 

onto a plane for texturing. In the last year, we have developed two approaches to reduce 

discontinuities in texture mapping 3D models made of planar surfaces [1]. The first one is tile 

based and can be used for images and planes at arbitrary angles relative to each other. The second 

one results in a more seamless texture, but is only applicable where camera axes for images are 

closely aligned with plane normals of the surfaces to be textured. The effectiveness of our 

approaches are demonstrated on two indoor datasets. 

 

 

 We have developed a surface completion method to generate plausible shapes and textures for 

missing regions of 3D models [9]. The missing regions are filled in by minimizing two energy 

functions for shape and texture, which are both based on similarities between the missing region 

and the rest of the object; in doing so, we take into account the positive correlation between shape 

and texture. We  have demonstrated the effectiveness of the proposed method experimentally by 

applying it to two models. 

 

 We  have developed a method for detailed geometry reconstruction of building facades in an 

urban environment, given a 3D point-cloud of LiDAR range data [4]. Our approach separates 

planar faces and interpolates their shape with Moving Least-Squares (MLS) sampling. A method 

is then proposed to reconstruct occluded areas of the building whereby gaps in the building 

surface are modeled with axis-aligned planes fit to the gap boundary vertices. This approach 

reconstructs unsampled areas of building surfaces under the assumption that buildings have 3D 
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rectilinear, axis-aligned features. We have demonstrated the effectiveness of our approach on a 

number of building facades. 

 

 We have developed a procedure for the automatic registration of thermographies with laser 

scanning point clouds [6]. Given the heterogeneous nature of the two modalities, we propose a 

feature-based approach, satisfying the requisite that extracted features have to be invariant not 

only to rotation, translation and scale but also to changes in illumination and dimensionality. As 

speed and minimum operator interaction are prerequisites for the viability of the process in the 

building industry, our automatic registration procedure includes automatic feature extraction with 

no human intervention. With this aim, a line segment detector is used to extract 2D lines from 

thermographies, and 3D lines are extracted through segmentation of the point cloud. Feature-

matching and the relative pose between thermographies and point cloud are obtained from an 

iterative procedure applied to detect and reject outliers; this includes rotation matrix and 

translation vector calculation and the application of the RANSAC algorithm to find a consistent 

set of matches. An automatically textured thermographic 3D model is the expected result of these 

procedures once the point cloud is filtered and triangulated. 

 

 We have developed a technique which uses  gridded approximate nearest neighbor searches for 

fast classification of geometric features in large LiDAR point clouds [8]. The underlying 

algorithm exploits spatial hashes and the forgiving nature of PCA as a part of geometric 

classification. We show a factor of 10-20 speed up for both actual and simulated point clouds 

with little or no loss in classification performance. Our approach is applicable to both uniform 

and variable–density aerial LiDAR datasets. 

 

 We developed a calibration method for multicamera-projector systems in which sensors face each 

other as well as share a common viewpoint. We use a translucent planar sheet framed in PVC 

piping as a calibration target which is placed at multiple positions and orientations within a scene. 

In each position, the target is captured by the cameras while it is being illuminated by a set of 

projected patterns from various projectors. The translucent sheet allows the projected patterns to 

be visible from both sides, allowing correspondences between devices that face each other. The 

set of correspondences generated between the devices using this target are input into a bundle 

adjustment framework to estimate calibration parameters. We demonstrate the effectiveness of 

this approach on a multiview structured light system made of three projectors and nine cameras. 

Details of this approach can be found in [11].  


